×
请登录
账号
密码
登录 Use it
博客
随笔
网盘
建站
资源
标签
毒鸡汤
程序员导航
登录
注册
标签: 数据挖掘算法 共 43 个结果.
谱聚类:直觉以及背后的数学原理
作者:Neerja Doshi编译:ronghuaiyang 导读 谱聚类,了解直觉以及背后的数学原理 什么是聚类? 聚类是一种广泛使用的无监督学习方法。聚类是这样分组的:集群中的点彼此相似,而与其他集群中的点不太相似。因此,如何在数据中寻找模式并为我们分组取决于算法,根据使用的算法,我们可能最终得到不同的集群。 有两种广泛使用的聚类方法: 紧密性——相互靠…
star2017
1年前
1544
0
推荐算法概览
为推荐系统选择正确的推荐算法非常重要,而可用的算法很多,想要找到最适合所处理问题的算法还是很有难度的。
star2017
1年前
8176
0
解密Uber数据科学团队路径选择算法的优化之路
一键用车现在已经烂大街,但是 Uber 简单的界面下又隐藏着怎样复杂的后端架构和服务呢?这些复杂的路径规划和订单匹配算法又是如何让车找到人,将人送到目的地的呢?现在让我们揭开Uber App这神秘的面纱。
star2017
1年前
2363
0
数据挖掘失败的根源
数据挖掘失败的根源。这里笔者结合案例系统梳理下这些挑战,并尝试给出这些挑战的深层次原因和解决建议。
star2017
1年前
5324
0
趣味数据挖掘系列2:烤鸭、面饼和甜面酱之朴素关联
此文从原讲课PPT中,取一些素材,来解释关联规则的挖掘思路和应用方法。
star2017
1年前
4818
0
趣味数据挖掘系列3:一篇“它引”上万的大牛论文与数据血统论
本文先通俗地介绍快速挖掘关联规则的Apriori算法,然后介绍发表这一算法的论文(它被引用了11480+次),最后关注此文的实际影响 与 传统影响因子的差距。
star2017
1年前
4751
0
趣味数据挖掘系列6:借水浒传故事,释决策树思路
决策树 (又称判定树,Decision Tree)是硕、博士生数据挖掘课程要点和难点,教学实践表明,这一章需要数学基础知识多,难得有趣。明知是难点,偏向难点行,再难也要“趣味”一番,从课程PPT中取了一些素材,把漫谈的焦点选在了水泊梁山。
star2017
1年前
1562
0
趣味数据挖掘系列7:团拜会与鸡尾酒会上的聚类
用异于传统的方式,从讲课PPT上取些素材(这样比较快),来说明聚类的一些概念,为下篇做些铺垫,下篇将通过通俗的例子说明一个著名的方法。
star2017
1年前
5180
0
谷歌邮件智能回复系统:基于循环神经网络构建
摘要:Google推出智能回复是使用深度神经网络训练的撰写email的功能。智能回复系统建立在一对循环神经网络之上,其中一个RNN用于对收到的电子邮件进行编码,而另一个用于预测可能的回复。至今为止,这项功能表现特别出色。 Google将为其Gmail应用推出一项称为智能回复(SmartReply)的新功能,这篇博文解析了SmartReply的技术原理:建立在…
star2017
1年前
9217
0
如何让神经网络把熊猫识别为秃鹫
摘要:本文作者基于论文阅读及实测,以尝试欺骗神经网络的方式,从工具安装到模型训练,逐步解析神经网络及其背后的数学原理。文章还提供了演示代码下载。 神奇的神经网络 当我打开Google Photos并从我的照片中搜索“skyline”时,它找到了我在八月拍摄的这张纽约地平线的照片,而我之前并未对它做过任何标记。 当我搜索‘cathedral’,Google的神…
star2017
1年前
7335
0
用人话讲明白kmeans聚类算法
用人话讲明白kmeans聚类算法
star2017
1年前
1833
0
数据挖掘系列篇:网易云音乐的个性化推荐漫谈
用过虾米、酷狗、QQ音乐、网易云音乐,个人感受网易云音乐在音乐推荐这块做的真心不错,特别是以“人”为角度的推荐,没有像虾米、酷狗推的那么乱。虾米还可以,但更多的是以歌搜歌的形式。刚注册了一个新的账号,避免有历史数据的干扰,听了一首周杰伦的《一路向北》和陈奕迅的《淘汰》,然后去个性化推荐里看到了蔡健雅的《红色高跟鞋》和曲婉婷的《承认》,给我的感觉还是比较惊喜,…
star2017
1年前
6009
0
大数据分析的概念及常用方法
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性(Veracity)。
star2017
1年前
9582
0
机器学习常用35大算法盘点(附思维导图)
本文将带你遍历机器学习领域最受欢迎的算法。系统地了解这些算法有助于进一步掌握机器学习。当然,本文收录的算法并不完全,分类的方式也不唯一。不过,看完这篇文章后,下次再有算法提起,你想不起它长处和用处的可能性就很低了。本文还附有两张算法思维导图供学习使用。
star2017
1年前
6224
0
说说数据挖掘算法工程师的三重境界
文/不周山 王国维的人生三重境界快被人们念叨烂了,资深文艺青年都已经不爱提这个,但把这种分法做个跨学科应用,倒是能看到一些新奇的东西。 十一前帮新东家在北京做了一轮校园招聘的算法面试官。虽然面试多年,但这还是我第一次如此密集地从事这项工作——一周时间里马不停蹄地面试了数十名候选者。长时间做一件事情,再结合原来类似的背景和经历,通常会发酵出一些东西,于是就有了…
star2017
1年前
5204
0
数据挖掘系列篇:分类算法概述
数据挖掘这块重点就是介绍算法和应用案例,还有相应的开发语言R、excel、mapreduce、spark。前面重点介绍了数据挖掘主要解决的几类问题,而分类问题是数据挖掘中的重头戏。 如果我们在高校里,常见的就是训练一群样本数据的特征,跑出模型,也不一定要关心它的上线模型调优的效果,也不一定要关心它的性能还有实际业务的情况。但我们在实际的业务过程中,作为算法工…
star2017
1年前
5561
0
面向程序员的数据挖掘指南3:隐式评价和基于物品的过滤算法
内容: 显式评价 隐式评价 哪种评价方式更准确? 基于用户的协同过滤 基于物品的协同过滤 修正的余弦相似度 Slope One算法 Slope One的Python实现 MovieLens数据 第二章中我们学习了协同过滤和推荐系统的基本知识,其中讲述的算法是比较通用的,可以适用于多种数据集。用户使用5到10分的标尺来对不同的物品进行打分,通过计算得到相似的用…
star2017
1年前
5158
0
数据挖掘算法:K均值算法
摘要:均值算法是一种典型的无监督学习算法,用来对数据进行分类。 聚类问题 Clustering 针对监督式学习,输入数据为 (x, y) ,目标是找出分类边界,即对新的数据进行分类。而无监督式学习只给出一组数据集 ${x_1, x_2, … , x_m}$ ,目标是去找出这组数据的模式特征,比如哪些数据是一种类型的,哪些数据是另外一种类型的。典型…
star2017
1年前
6015
0
数据挖掘系列篇:聚类算法概述
本篇重点介绍聚类算法的原理,应用流程、使用技巧、评估方法、应用案例等。具体的算法细节可以多查阅相关的资料。聚类的主要用途就是客户分群。1.聚类 VS 分类 分类是“监督学习”,事先知道有哪些类别可以分。 聚类是“无监督学习”,事先不知道将要分成哪些类。 举个例子,比如苹果、香蕉、猕猴桃、手机、电话机。根据特征的不同,我们聚类会分为【苹果、香蕉、猕猴桃】为水果…
star2017
1年前
1388
0
考拉FM的个性化数据挖掘和处理
提起FM类APP,你都会想起哪些应用程序?来自易观智库数据显示,2014年3月电台类应用月度活跃人数最高的APP仍是考拉FM。上线不到一年的考拉FM,为何发展如此之猛? 与其他移动端电台不同的是,考拉FM采用个性化推荐音频流的播放逻辑,在用户未进行主动选择的情况下依旧能够收听到心仪的节目。移动音频娱乐与大数据挖掘的结合会是怎样的爆发?几天前,在中国电子学会主…
star2017
1年前
4954
0
1
2
3
本文目录
热门标签
程序员导航
热门文章
1.
如何学习Python数据科学(2018)
2.
31个与大数据有关的非常不错的资源和文章(附全链接)
3.
这可能是人工智能、机器学习和大数据领域覆盖最全的一份速查表
4.
onlyoffice 20并发限制处理,up to 20 maximum
5.
史上最全的“大数据”学习资源(上)
6.
中文版onlyoffice/documentserver镜像制作
阿里云新老用户最新优惠
阿里云新老用户最新优惠
最新发布
1.
沙尔克04挑战汉堡:锋利的攻势能否撬动防线?
2.
PG赏金女王热血来袭!化身女海盗,踏上海上传奇之路
3.
简单Dify调用MCP服务笔记
4.
主流向量数据库一览
5.
docker 镜像没安装vi可以使用命令修改~/.bashrc
6.
Dify大模型集成工具本地部署运行笔记
最新评论
签到
?
签到
签到
签到,学习
签到