×
请登录
账号
密码
登录 Use it
博客
随笔
网盘
建站
资源
标签
毒鸡汤
程序员导航
登录
注册
数据湖和数据中台的区别?
数据湖和数据中台的区别?
star2017
博客
1年前
996
0
深度学习入门视频课程学习笔记01:挑战
深度学习问题面临的挑战
star2017
博客
1年前
6784
0
大嘴巴漫谈数据挖掘:定量分析助定性,分析结果有展示
定性研究结束后,随后的定量分析需要接触一定规模的用户,以此获取用户对产品的认知度等方面的信息,为了保证样本的代表性,通常采取电话访问的形式。 与试商用时期相比,产品上市后的用户数量会有所增加。如果成本允许,建议总样本规模尽可能达到600至800人左右,并按照用户黏性、订购方式分别配额。通常,访问800个用户,在95%的置信度下,可以确保误差在3.5%以内。 …
star2017
博客
1年前
5474
0
个性化推荐到底是不是个伪命题?
最近,有一位网友在微博上说,推荐是不是个伪命题连续几天试用了据说很好的某头条,某资讯以及某快报,感觉逃脱不了看什么就是什么的套路。也有人说,这是Exploitation & Exploration出了问题,没有很好得Exploration导致的结果。那么,个性化推荐到底是不是伪命题呢为什么很多推荐系统过了一段时间以后就老是推荐类似的东西呢本篇文章就要…
star2017
博客
1年前
7750
0
银行推荐系统在生活中的应用案例解析
介绍 日常生活中,推荐工作都是怎样开展的呢推荐来源于经验。假设现在有人需要你基于现实生活中的数据立刻作出推荐,你会怎样做呢首先,我们会感觉自己得像智能顾问一样聪明。其次,我们做的已经超出人类的能力范围了。因此,我们的目标就是建立智能软件,让它为我们提供值得信赖的推荐系统。 当我们访问亚马逊、Netflix、 imdb等许多网站时,我们的潜意识里已经接触到了一…
star2017
博客
1年前
7652
0
解读芝麻信用与FICO评分的差异
自从听说阿里巴巴推出的芝麻信用评分可以帮助办理签证,小编就对这种评分产生了深厚的兴趣,何况它利用大数据分析的方法听上去也很酷,不知道你有没用过呢?今天,我们推送的文章就深度介绍了芝麻信用评分与经典的FICO评分之间的差异……
star2017
博客
1年前
6122
0
搭建电商平台的标签系统?看这就够了
摘要:如何建立电商平台的标签系统? 期待该问题的优质回答,给所有需要设计标签系统的童鞋一个很好的指引,简要说明一下要做的事情: 1.电商系统的标签,可以支持前台分类的搜索(或者叫查询?) 2.电商系统的标签,可以支持某个关键词搜索出的产品的筛选 3.电商系统的标签,可以支持给商品、用户、供应商、产品、评价等多个维度大标签。 ▍陆志亚 上海商米科技 产品经理 …
star2017
博客
1年前
8166
0
大嘴巴漫谈数据挖掘:维度角度辨特征,环比同比看趋势
外部调研结束后,接下来的内部数据分析则需由产品经理、行业专家和数据分析师共同配合完成。产品经理首先提出业务需求,并及时帮助数据分析师理解需求目标,然后数据分析师在充分掌握的基础上,将其转化为内部数据挖掘的分析目标,最后与行业专家确认所构建出的业务模型。同时,通过内部数据分析,产品经理还可以了解不同用户群体对产品的使用情况,以及从用户使用特征的角度来划分市场。…
star2017
博客
1年前
5408
0
产品策略研究期的数据分析与挖掘
摘要:《大嘴巴漫谈数据挖掘》系统而全面地描述了数据挖掘的基本概念、常用算法等。《大嘴巴漫谈数据挖掘(第2季产品篇)》是《大嘴巴漫谈数据挖掘》的姊妹篇,在前作的基础上,它以产品为核心,按照产品发展的过程,依次详细分析产品策略研究期、产品概念评估期、产品研发期、产品测试期、产品导入期、产品发展期、产品成熟期、产品衰退期这8个产品发展的必经阶段所必须做的数据挖掘工…
star2017
博客
1年前
9417
0
基于树的建模-完整教程(R&Python)
简介 基于树的学习算法被认为是最好的方法之一,主要用于监测学习方法。基于树的方法支持具有高精度、高稳定性和易用性解释的预测模型。不同于线性模型,它们映射非线性关系相当不错。他们善于解决手头的任何问题(分类或回归)。 决策树方法,随机森林,梯度增加被广泛用于各种数据科学问题。因此,对于每一个分析师(新鲜),重要的是要学习这些算法和用于建模。 决策树、随机森林、…
star2017
博客
1年前
5793
0
一线专家谈谈:数据挖掘在实际领域中的那些事儿
大家好,我是明略数据的佘伟。今天非常荣幸能给大家分享明略数据在大数据挖掘方面做的一些事情。 企业中的数据挖掘我们先来看看在企业中数据挖掘都是怎么做的,以及有着哪些问题。 图中的左边是SPSS在1999年提出的《跨行业数据挖掘标准流程》,在图中定义了数据挖掘的6个步骤。虽然这个图已经提出有10几年了,但是在大数据环境下,这个流程依然适用。 1.理解商业问题。这…
star2017
博客
1年前
6191
0
字节跳动是怎么做全链路压测的?
以下文章来源于字节跳动技术质量 ,作者GML 背景 全链路压测指的是基于实际的生产业务场景、系统环境,模拟海量的用户请求和数据对整个业务链进行压力测试,并持续调优的过程。常用于复杂业务链路中,基于全链路压力测试发现服务端性能问题。 随着公司业务的不断扩张,用户流量在不断提升,研发体系的规模和复杂性也 ....
star2017
博客
1年前
2369
0
Apache Flink 在汽车之家的应用与实践
Flink 中文社区 邸星星 稿 摘要: 本文整理自汽车之家实时计算平台负责人邸星星在 Flink Forward Asia 2020 分享的议题《Apache Flink 在汽车之家的应用及实践》。 一、背景及现状 1. 第一阶段 在 2019 年之前,汽车之家的大部分实时业务都是运行在 Stor ....
star2017
博客
1年前
1699
0
神策数据 | 从技术视角看什么才是值得拥有的 A/B 测试?
[图片] 神策数据 稿 A/B 测试被更多人熟知的是持续观察并对照按一定规则分成的 A、B 两组测试样本,基于数据反馈辅助优化决策,其背后复杂的数学理论和试验基础设施却往往被人忽视。 目前,国内一线互联网公司大多采用自研的方式建设 A/B 测试平台,而中小互联网企业和传统行业的企业则会选择自采的方式 ....
star2017
博客
1年前
856
0
百度信息流和搜索业务中的 KV 存储实践
[图片] 百度技术 稿 导读:近年来,云原生化、全用户态、软硬协同等技术对KV存储服务产生了巨大的影响,上述技术在极大提升了服务的性能和降低服务成本的同时,也对系统的架构和实现提出了新的要求。百度在信息流和搜索业务中大量使用了KV存储服务,服务每天响应近千亿次各类访问请求,如何运用上述技术提升系统的 ....
star2017
博客
1年前
2360
0
20个问题揭穿冒牌数据科学家
如今数据科学家正式成为21世纪最性感的工作,人人都想来分一杯羹。 这也意味着会有一些冒牌货。这些人自称数据科学家,却不具有相应的技能。 这不见得是有意欺骗。数据科学是崭新的领域,目前对此岗位也缺乏被广泛认可的描述。这意味着许多人会认为自己是数据科学家,仅仅因为他们常跟数据打交道。 “冒牌数据科学家通常是某一个特定学科的专家,且坚信他们的学科才是唯一真正的数据…
star2017
博客
1年前
13066
0
大数据下客户金融产品购买概率预测
本文讨论用逻辑回归模型预测在金融市场情景下客户对金融产品的购买概率,以股票购买持仓概率作为研究对象。并探讨了TB级百万特征金融数据处理方法。 模型 基本假设:客户每日的持仓,是基于当时金融市场情景以及股票属性作出决策的独立事件。 该逻辑回归Logistic Regression模型简单描述如下: 客户购买持仓股票概率是指客户在指定日期购买持有指定股票的概率。…
star2017
博客
1年前
978
0
MapRCEO对2016大数据的5个预测
MapR Converged Data Platform将Hadoop和Spark的强大功能与全局事件流、实时数据库能力与企业存储集成到了一起,用于开发与运行创新性的数据应用。MapR Platform由业界最快速、最可靠、安全且开放的数据基础设施所驱动,极大降低了TCO,并实现了全局的实时数据应用。comScore的CTO Mike Brown这样评价Ma…
star2017
博客
1年前
1390
0
互联网人群画像和你所不知道的真相(一)
作为新时代互联网营销的关键部分,人群画像引起了诸多兴趣,近年颇为风靡。几乎所有的互联网广告供应商都不约而同的强调,他们有足够精确的人群画像数据,确保能够找到广告主真正的受众。但是事情果真如此吗?人群画像是否是一劳永逸的解决方案?本文尝试解答这些问题。
star2017
博客
1年前
7729
0
数据杂谈
摘要:记得几年前,曾经有人预测过未来最流行的三大技术:大数据、高并发、数据挖掘。到现在来看,这三种技术的确也随着这几年互联网的发展变得越发成熟和可靠。掌握这三种技术的人,不管是求职还是创业,都属于香饽饽。 一个很深的印象就是当年研究生毕业的时候,专业是数据挖掘、大数据的学生都比较受各种企业的青睐,不管他是不是真的掌握了这些东西。虽然我对大部分高校的相关专业持…
star2017
博客
1年前
10438
0
1
...
268
269
270
...
472
本文目录
热门标签
程序员导航
热门文章
1.
如何学习Python数据科学(2018)
2.
SpringBoot2实践系列(六):集成监控模块Actuator详解
3.
31个与大数据有关的非常不错的资源和文章(附全链接)
4.
这可能是人工智能、机器学习和大数据领域覆盖最全的一份速查表
5.
史上最全的“大数据”学习资源(上)
6.
微服务应用(十五):一台服务器重启导致Redis集群宕机所有业务不可用问题分析
阿里云新老用户最新优惠
阿里云新老用户最新优惠
最新发布
1.
本地部署MineRu解析pdf、docx、excel等文档
2.
新技术名词
3.
查看mysql数据库中前缀位sys_data_的表,并生成删表语句
4.
centos docker 安装opensearch
5.
centos docker安装redis
6.
Linux使用命令记录:查看端口及开放端口(netstat、iptables)
最新评论
签到
?
签到
签到
签到,学习
签到