pyspark的使用和操作(基础整理)

star2017 1年前 ⋅ 1213 阅读

from https://blog.csdn.net/cymy001/article/details/78483723

Spark提供了一个Python_Shell,即pyspark,从而可以以交互的方式使用Python编写Spark程序。
有关Spark的基本架构介绍参考http://blog.csdn.net/cymy001/article/details/78483614;
有关Pyspark的环境配置参考http://blog.csdn.net/cymy001/article/details/78430892。

pyspark里最核心的模块是SparkContext(简称sc),最重要的数据载体是RDD。RDD就像一个NumPy array或者一个Pandas Series,可以视作一个有序的item集合。只不过这些item并不存在driver端的内存里,而是被分割成很多个partitions,每个partition的数据存在集群的executor的内存中。

引入Python中pyspark工作模块
import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)
#任何Spark程序都是SparkContext开始的,SparkContext的初始化需要一个SparkConf对象,SparkConf包含了Spark集群配置的各种参数(比如主节点的URL)。初始化后,就可以使用SparkContext对象所包含的各种方法来创建和操作RDD和共享变量。Spark shell会自动初始化一个SparkContext(在Scala和Python下可以,但不支持Java)。
#getOrCreate表明可以视情况新建session或利用已有的session

SparkSession是Spark 2.0引入的新概念。SparkSession为用户提供了统一的切入点,来让用户学习spark的各项功能。 在spark的早期版本中,SparkContext是spark的主要切入点,由于RDD是主要的API,我们通过sparkcontext来创建和操作RDD。对于每个其他的API,我们需要使用不同的context。例如,对于Streming,我们需要使用StreamingContext;对于sql,使用sqlContext;对于hive,使用hiveContext。但是随着DataSet和DataFrame的API逐渐成为标准的API,就需要为他们建立接入点。所以在spark2.0中,引入SparkSession作为DataSet和DataFrame API的切入点。SparkSession实质上是SQLContext和HiveContext的组合(未来可能还会加上StreamingContext),所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了SparkContext,所以计算实际上是由SparkContext完成的。

初始化RDD的方法
(1)本地内存中已经有一份序列数据(比如python的list),可以通过sc.parallelize去初始化一个RDD。当执行这个操作以后,list中的元素将被自动分块(partitioned),并且把每一块送到集群上的不同机器上。
import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

#(a)利用list创建一个RDD;使用sc.parallelize可以把Python list,NumPy array或者Pandas Series,Pandas DataFrame转成Spark RDD。
rdd = sc.parallelize([1,2,3,4,5])
rdd
#Output:ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:480

#(b)getNumPartitions()方法查看list被分成了几部分
rdd.getNumPartitions()
#Output:4

#(c)glom().collect()查看分区状况
rdd.glom().collect()
#Output:[[1], [2], [3], [4, 5]]

在这个例子中,是一个4-core的CPU笔记本;Spark创建了4个executor,然后把数据分成4个块。colloect()方法很危险,数据量上BT文件读入会爆掉内存……

(2)创建RDD的另一个方法是直接把文本读到RDD。文本的每一行都会被当做一个item,不过需要注意的一点是,Spark一般默认给定的路径是指向HDFS的,如果要从本地读取文件的话,给一个file://开头(windows下是以file:\\开头)的全局路径。
import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

#(a)记录当前pyspark工作环境位置
import os
cwd=os.getcwd()
cwd
#Output:’C:\\Users\\Yu\\0JulyLearn\\5weekhadoopspark’

#(b)要读入的文件的全路径
rdd=sc.textFile(“file:\\\\\\” + cwd + “\\names\yob1880.txt”)
rdd
#Output:file:\\\C:\Users\Yu\0JulyLearn\5weekhadoopspark\names\yob1880.txt MapPartitionsRDD[3] at textFile at NativeMethodAccessorImpl.java:0

#(c)first()方法取读入的rdd数据第一个item
rdd.first()
#Output:’Mary,F,7065′

甚至可以sc.wholeTextFiles读入整个文件夹的所有文件。但是要特别注意,这种读法,RDD中的每个item实际上是一个形如(文件名,文件所有内容)的元组。读入整个文件夹的所有文件。

import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

#记录当前pyspark工作环境位置
import os
cwd=os.getcwd()
cwd
#Output:’C:\\Users\\Yu\\0JulyLearn\\5weekhadoopspark’

rdd = sc.wholeTextFiles(“file:\\\\\\” + cwd + “\\names\yob1880.txt”)
rdd
#Output:org.apache.spark.api.java.JavaPairRDD@12bcc15

rdd.first()
其余初始化RDD的方法,包括:HDFS上的文件,Hive中的数据库与表,Spark SQL得到的结果。这里暂时不做介绍。

RDD Transformation
(1)RDDs可以进行一系列的变换得到新的RDD,有点类似列表推导式的操作,先给出一些RDD上最常用到的transformation:
map() 对RDD的每一个item都执行同一个操作
flatMap() 对RDD中的item执行同一个操作以后得到一个list,然后以平铺的方式把这些list里所有的结果组成新的list
filter() 筛选出来满足条件的item
distinct() 对RDD中的item去重
sample() 从RDD中的item中采样一部分出来,有放回或者无放回
sortBy() 对RDD中的item进行排序

如果想看操作后的结果,可以用一个叫做collect()的action把所有的item转成一个Python list。数据量大时,collect()很危险……

import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

numbersRDD = sc.parallelize(range(1,10+1))
print(numbersRDD.collect())

#map()对RDD的每一个item都执行同一个操作
squaresRDD = numbersRDD.map(lambda x: x**2) # Square every number
print(squaresRDD.collect())

#filter()筛选出来满足条件的item
filteredRDD = numbersRDD.filter(lambda x: x % 2 == 0) # Only the evens
print(filteredRDD.collect())

#Output:
#[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
#[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
#[2, 4, 6, 8, 10]

import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

#flatMap() 对RDD中的item执行同一个操作以后得到一个list,然后以平铺的方式把这些list里所有的结果组成新的list
sentencesRDD=sc.parallelize([‘Hello world’,’My name is Patrick’])
wordsRDD=sentencesRDD.flatMap(lambda sentence: sentence.split(” “))
print(wordsRDD.collect())
print(wordsRDD.count())

#Output:
#[‘Hello’, ‘world’, ‘My’, ‘name’, ‘is’, ‘Patrick’]
#6

对比一下:
这里如果使用map的结果是[[‘Hello’, ‘world’], [‘My’, ‘name’, ‘is’,‘Patrick’]],
使用flatmap的结果是全部展开[‘Hello’, ‘world’, ‘My’, ‘name’, ‘is’,‘Patrick’]。
flatmap即对应Python里的如下操作:

l = [‘Hello world’, ‘My name is Patrick’]
ll = []
for sentence in l:
ll = ll + sentence.split(” “) #+号作用,two list拼接
ll

(2)最开始列出的各个Transformation,可以一个接一个地串联使用,比如:
import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

def doubleIfOdd(x):
if x % 2 == 1:
return 2 * x
else:
return x
numbersRDD = sc.parallelize(range(1,10+1))
resultRDD = (numbersRDD
.map(doubleIfOdd) #map,filter,distinct()
.filter(lambda x: x > 6)
.distinct()) #distinct()对RDD中的item去重
resultRDD.collect()

#Output:[8, 10, 18, 14]

(3)当遇到更复杂的结构,比如被称作“pair RDDs”的以元组形式组织的k-v对(key, value),Spark中针对这种item结构的数据,定义了一些transform和action:
reduceByKey(): 对所有有着相同key的items执行reduce操作
groupByKey(): 返回类似(key, listOfValues)元组的RDD,后面的value List 是同一个key下面的
sortByKey(): 按照key排序
countByKey(): 按照key去对item个数进行统计
collectAsMap(): 和collect有些类似,但是返回的是k-v的字典

import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

rdd=sc.parallelize([“Hello hello”, “Hello New York”, “York says hello”])
resultRDD=(rdd
.flatMap(lambda sentence:sentence.split(” “))
.map(lambda word:word.lower())
.map(lambda word:(word, 1)) #将word映射成(word,1)
.reduceByKey(lambda x, y: x + y)) #reduceByKey对所有有着相同key的items执行reduce操作
resultRDD.collect()

#Output:[(‘hello’, 4), (‘york’, 2), (‘says’, 1), (‘new’, 1)]

result = resultRDD.collectAsMap() #collectAsMap类似collect,以k-v字典的形式返回
result

#Output:{‘hello’: 4, ‘new’: 1, ‘says’: 1, ‘york’: 2}

resultRDD.sortByKey(ascending=True).take(2) #sortByKey按键排序

#Output:[(‘hello’, 4), (‘new’, 1)]

#取出现频次最高的2个词
print(resultRDD
.sortBy(lambda x: x[1], ascending=False)
.take(2))

#Output:[(‘hello’, 4), (‘york’, 2)]

RDD间的操作
(1)如果有2个RDD,可以通过下面这些操作,对它们进行集合运算得到1个新的RDD
rdd1.union(rdd2): 所有rdd1和rdd2中的item组合(并集)
rdd1.intersection(rdd2): rdd1 和 rdd2的交集
rdd1.substract(rdd2): 所有在rdd1中但不在rdd2中的item(差集)
rdd1.cartesian(rdd2): rdd1 和 rdd2中所有的元素笛卡尔乘积(正交和)

import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

#初始化两个RDD
numbersRDD = sc.parallelize([1,2,3])
moreNumbersRDD = sc.parallelize([2,3,4])
numbersRDD.union(moreNumbersRDD).collect() #union()取并集

#Output:[1, 2, 3, 2, 3, 4]

numbersRDD.intersection(moreNumbersRDD).collect() #intersection()取交集

#Output:[2, 3]

numbersRDD.subtract(moreNumbersRDD).collect() #substract()取差集

#Output:[1]

numbersRDD.cartesian(moreNumbersRDD).collect() #cartesian()取笛卡尔积

#Output:[(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)]

(2)在给定2个RDD后,可以通过一个类似SQL的方式去join它们
import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

# Home of different people
homesRDD = sc.parallelize([
(‘Brussels’, ‘John’),
(‘Brussels’, ‘Jack’),
(‘Leuven’, ‘Jane’),
(‘Antwerp’, ‘Jill’),
])

# Quality of life index for various cities
lifeQualityRDD = sc.parallelize([
(‘Brussels’, 10),
(‘Antwerp’, 7),
(‘RestOfFlanders’, 5),
])

homesRDD.join(lifeQualityRDD).collect() #join

#Output:
#[(‘Antwerp’, (‘Jill’, 7)),
# (‘Brussels’, (‘John’, 10)),
# (‘Brussels’, (‘Jack’, 10))]

homesRDD.leftOuterJoin(lifeQualityRDD).collect() #leftOuterJoin

#Output:
#[(‘Antwerp’, (‘Jill’, 7)),
# (‘Leuven’, (‘Jane’, None)),
# (‘Brussels’, (‘John’, 10)),
# (‘Brussels’, (‘Jack’, 10))]

homesRDD.rightOuterJoin(lifeQualityRDD).collect() #rightOuterJoin

#Output:
#[(‘Antwerp’, (‘Jill’, 7)),
# (‘RestOfFlanders’, (None, 5)),
# (‘Brussels’, (‘John’, 10)),
# (‘Brussels’, (‘Jack’, 10))]

homesRDD.cogroup(lifeQualityRDD).collect() #cogroup

#Output:
#[(‘Antwerp’,
# (<pyspark.resultiterable.ResultIterable at 0x73d2d68>,
# <pyspark.resultiterable.ResultIterable at 0x73d2940>)),
# (‘RestOfFlanders’,
# (<pyspark.resultiterable.ResultIterable at 0x73d2828>,
# <pyspark.resultiterable.ResultIterable at 0x73d2b70>)),
# (‘Leuven’,
# (<pyspark.resultiterable.ResultIterable at 0x73d26a0>,
# <pyspark.resultiterable.ResultIterable at 0x7410a58>)),
# (‘Brussels’,
# (<pyspark.resultiterable.ResultIterable at 0x73d2b38>,
# <pyspark.resultiterable.ResultIterable at 0x74106a0>))]

# Oops! Those <ResultIterable>s are Spark’s way of returning a list
# that we can walk over, without materializing the list.
# Let’s materialize the lists to make the above more readable:
(homesRDD
.cogroup(lifeQualityRDD)
.map(lambda x:(x[0], (list(x[1][0]), list(x[1][1]))))
.collect())

#Output:
#[(‘Antwerp’, ([‘Jill’], [7])),
# (‘RestOfFlanders’, ([], [5])),
# (‘Leuven’, ([‘Jane’], [])),
# (‘Brussels’, ([‘John’, ‘Jack’], [10]))]

惰性计算,actions方法
特别注意:Spark的一个核心概念是惰性计算。当你把一个RDD转换成另一个的时候,这个转换不会立即生效执行!!!Spark会把它先记在心里,等到真的有actions需要取转换结果时,才会重新组织transformations(因为可能有一连串的变换)。这样可以避免不必要的中间结果存储和通信。

常见的action如下,当它们出现的时候,表明需要执行上面定义过的transform了:

collect(): 计算所有的items并返回所有的结果到driver端,接着 collect()会以Python list的形式返回结果
first(): 和上面是类似的,不过只返回第1个item
take(n): 类似,但是返回n个item
count(): 计算RDD中item的个数
top(n): 返回头n个items,按照自然结果排序
reduce(): 对RDD中的items做聚合

import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)

rdd = sc.parallelize(range(1,10+1))
rdd.reduce(lambda x, y: x + y) #reduce(): 对RDD中的items做聚合

#Output:55

reduce的原理:先在每个分区(partition)里完成reduce操作,然后再全局地进行reduce。

有时候需要重复用到某个transform序列得到的RDD结果。但是一遍遍重复计算显然是要开销的,所以我们可以通过一个叫做cache()的操作把它暂时地存储在内存中。缓存RDD结果对于重复迭代的操作非常有用,比如很多机器学习的算法,训练过程需要重复迭代。
import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName(“miniProject”).setMaster(“local[*]”)
sc=SparkContext.getOrCreate(conf)
import numpy as np
numbersRDD = sc.parallelize(np.linspace(1.0, 10.0, 10))
squaresRDD = numbersRDD.map(lambda x: x**2)

squaresRDD.cache() # Preserve the actual items of this RDD in memory

avg = squaresRDD.reduce(lambda x, y: x + y) / squaresRDD.count()
print(avg)

#Output:38.5

———————
作者:Young_id
来源:CSDN
原文:https://blog.csdn.net/cymy001/article/details/78483723
版权声明:本文为博主原创文章,转载请附上博文链接!

原创文章,作者:xsmile,如若转载,请注明出处:http://www.17bigdata.com/pyspark%e7%9a%84%e4%bd%bf%e7%94%a8%e5%92%8c%e6%93%8d%e4%bd%9c%e5%9f%ba%e7%a1%80%e6%95%b4%e7%90%86/

更多内容请访问:IT源点

相关文章推荐

全部评论: 0

    我有话说: